
Target-adaptive optical phased array lidar
YUNHAO FU,1 BAISONG CHEN,1 WENQIANG YUE,1 MIN TAO,1 HAOYANG ZHAO,1 YINGZHI LI,1 XUETONG LI,1

HUAN QU,1 XUEYAN LI,1 XIAOLONG HU,1,* AND JUNFENG SONG1,2

1State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
2Peng Cheng Laboratory, Shenzhen 518000, China
*Corresponding author: huxiaolong@jlu.edu.cn

Received 28 November 2023; revised 26 February 2024; accepted 26 February 2024; posted 26 February 2024 (Doc. ID 514468);
published 12 April 2024

Lidar based on the optical phased array (OPA) and frequency-modulated continuous wave (FMCW) technology
stands out in automotive applications due to its all-solid-state design, high reliability, and remarkable resistance
to interference. However, while FMCW coherent detection enhances the interference resistance capabilities, it
concurrently results in a significant increase in depth computation, becoming a primary constraint for improving
point cloud density in such perception systems. To address this challenge, this study introduces a lidar solution
leveraging the flexible scanning characteristics of OPA. The proposed system categorizes target types within the
scene based on RGB images. Subsequently, it performs scans with varying angular resolutions depending on the
importance of the targets. Experimental results demonstrate that, compared to traditional scanning methods,
the target-adaptive method based on semantic segmentation reduces the number of points to about one-quarter
while maintaining the resolution of the primary target area. Conversely, with a similar number of points, the
proposed approach increases the point cloud density of the primary target area by about four times. © 2024
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1. INTRODUCTION

Advances in sensing and artificial intelligence (AI) technology
have significantly accelerated the adoption of autonomous driv-
ing. This technology has demonstrated significant advantages
in various sectors, including rapid sorting, campus logistics,
and delivery robots [1–3]. Notwithstanding considerable
progress, Level 4 autonomous driving remains confined to lim-
ited areas. Most implemented autonomous driving systems are
currently limited to Level 2 and below [4,5]. The obstacles to
achieving a higher level of autonomous driving reside partly in
the limited capabilities of perception systems [6–8]. An ideal
system would combine a wide field of view (FOV) with high
resolution, precision, dynamic range, reliability, and cost-effec-
tiveness. Commonly used perception devices include cameras,
lidars, millimeter-wave radars, and ultrasonic radars [7–13].
Among these devices, millimeter-wave and ultrasonic radars
serve primarily as supplementary tools, owing to their low res-
olution; cameras and lidars constitute the core of perception
systems. Cameras, known for their high maturity, resolution,
reliability, wide FOV, and cost-effectiveness, are excellent de-
vices for mimicking human vision and are vital for recognizing
traffic signs. However, cameras face challenges in precise 3D
spatial perception. Companies such as Tesla advocate pure
vision-based autonomous driving. However, this approach pla-
ces very high demands on algorithm development capabilities,

computational platforms, and data collection and annotation.
Therefore, even powerful companies like Tesla, with substantial
financial and technological resources, have not been able to
achieve comprehensive technological implementation. Lidar,
renowned for its precise spatial perception and high resolution,
serves as a crucial complement to the camera and is a vital
component of autonomous driving systems. However, since
mechanical lidars were introduced into autonomous driving
systems in the DARPA Grand Challenge 2007, they have
not yet been widely adopted for mass-market vehicles due to
their mediocre reliability. This issue has been partially mitigated
by hybrid solid-state technology; however, challenges remain.
Lidars based on single-photon avalanche diode (SPAD) and
vertical-cavity surface-emitting laser (VCSEL) arrays have real-
ized a truly all-solid-state solution, significantly improving the
reliability [14–16]. Nevertheless, due to the strong coupling
among the FOV, resolution, and cost, it often necessitates
the integration of lidars with varying focal lengths to effectively
cater to the demands of autonomous driving applications.
Furthermore, environmental light interference and lidar cross-
talk constitute significant hurdles to the widespread adoption of
this kind of lidar.

Lidar systems that leverage optical phased array (OPA) tech-
nology utilize a 2D scanning mechanism based on an OPA
chip. The OPA chip controls the direction of the combined
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beam by adjusting the phase differences of light within its vari-
ous channels [17–21]. Figures 1(a) and 1(b) depict the princi-
ple of OPA beam steering and the structure of the OPA,
respectively. Compared to mechanical and hybrid solid-state
lidar, OPA lidar exhibits greater reliability with its solid-state
scanning ability. Moreover, it provides superior scanning flex-
ibility compared to solid-state lidar based on SPAD and
VCSEL arrays because of its capacity to rapidly switch between
any two detections within the FOV simply by adjusting the
OPA control voltages. This feature facilitates 2D scanning with
the desired FOV and resolution [22–25]. OPA lidar employs
coherent detection using frequency-modulated continuous
waves (FMCWs) and demonstrates remarkable resistance to
ambient light and other lidars [26–29]. Recently, significant
advances have been made in OPA lidar. In 2019, Analog
Photonics introduced an OPA-based coherent ranging and ve-
locimetry measurement system. It can achieve a large FOV of
56° × 15° and a steerable beam with an FWHM diffraction an-
gle of 0.04° [30,31]. In 2020, they presented an OPA chip with
8192 elements, which could capture point cloud images of vari-
ous outdoor objects with a detection range of 35 m and
achieved a 100° × 17° FOV [32]. In 2022, we developed a
chain antenna OPA based on a dual-level silicon nitride wave-
guide, which could expand the FOV to 100° × 19.4° with a
divergence of 0.021° × 0.029° [22]. In 2023, a monolithic sil-
icon photonic lidar device incorporating 9216 OPA elements
was presented, capable of capturing point cloud images of
targets up to 50 m away at a rate of 10,000 points/s [33].
Notwithstanding these successes, OPA lidar remains con-
strained by several factors. Notably, FMCW modulation and
demodulation technology requires numerous fast Fourier
transform (FFT) calculations, requiring a significantly greater
computational workload than conventional time-of-flight
(TOF)-based lidar systems. It leads to a significant increase
in the system power consumption and cost and a notable de-
crease in the point rate and real-time processing capability.

In real-world driving scenarios, key objects such as pedes-
trians, vehicles, and traffic signs often constitute only a small

proportion of the scene. Conversely, irrelevant objects, such as
the sky, out-of-range objects, and objects with monotonous fea-
tures like the ground, tend to dominate the FOV. It results in a
considerable amount of data that are either irrelevant or redun-
dant for automated driving systems. This phenomenon is dem-
onstrated in Fig. 2(a), which shows the image segmentation of a
typical traffic scene, and Fig. 2(b), which depicts a point cloud
from the KITTI autonomous driving dataset captured using a
Velodyne 64-line lidar [34,35]. To address the abovemen-
tioned issues, an advanced target-adaptive OPA lidar imaging
method is proposed in this study. This method utilizes RGB
images to identify and classify targets in the current scene.
Leveraging the flexibility of OPA lidar in scan angle control,
it dynamically adjusts the scanning resolution of different re-
gions based on the importance of various targets. This tailored
scanning approach not only gazes at pivotal targets, thus reduc-
ing the overall scanning point cloud volume, but also substan-
tially increases the point cloud density for these key objects,
curtailing ineffective and redundant point clouds. The exper-
imental results indicate that the target-adaptive method
reduced the total point cloud requirement to about one-quarter

Fig. 1. (a) Principle of optical phased array (OPA) beam steering. (b) Structural design of the OPA chip. (c) Distance resolution principle of
frequency-modulated continuous waves (FMCWs).

Fig. 2. (a) Target distribution in various traffic scenarios. (b) Lidar
sensor-captured point cloud in a specific traffic scenario.
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compared to uniform high-density scanning. Additionally,
compared to a global low-density scan with an equivalent point
cloud number, the target-adaptive method quadrupled the
point cloud density for the key target, significantly enhancing
the system’s perceptiveness.

2. METHOD

A. Optical Phased Array Lidar
An OPA comprises multiple optical antenna arrays strategically
spaced at specific intervals. The direction of beam deflection
can be precisely controlled by modulating the near-field phase
differences between the OPA antennas. In this study, we used
an OPA chip with a Vernier OPA structure, incorporating
silicon-based chained grating antennas [36]. The operation of
the optical phase modulator in this architecture is based on the
thermo-optic effect, using a heated resistor for phase modula-
tion. When the resistor heats the waveguide, it alters the wave-
guide’s refractive index, creating distinct phase differences in
equally powered beams. The OPA chip, built on a layer of
silicon nitride resting on a silicon-on-insulator platform
(Si3N4-on-SOI), features various components, including cas-
caded multimode interference (MMI) couplers, thermo-optic
phase shifter arrays, drive signal control electrodes, and grating
antenna arrays. It is equipped with 128 transmission (TX) an-
tennas and an equal number of reception (RX) antennas, en-
abling simultaneous transmission and reception of optical
signals. In MMI, the optical power is evenly distributed across
channels, with each thermo-optic phase shifter linked to a drive
voltage signal via signal electrodes, thereby facilitating precise
control over the optical phase of each channel. This mechanism
allows the adjustment of the deflection angles in both the TX
and RX OPAs, providing versatile beam deflection and scan-
ning capabilities within a specified range of FOV angles.
Building on the authors’ prior research, this study integrated an
OPA chip into an FMCW lidar system [22,37,38]. Utilizing
the principle of coherent detection, the system measured the
target distances by analyzing the frequency difference between
the received and reference signals.

B. Joint Calibration of the Camera and Lidar
Joint calibration of the camera and lidar is a pivotal step in the
integration of these sensors, particularly for applications such as
autonomous driving that requires precise spatial awareness. The
calibration process establishes the exact spatial correlation be-
tween the camera and the lidar system. As depicted in Fig. 3,
the concurrent calibration of the camera and the OPA lidar is
necessary. The calibration yields a pose transformation matrix
that delineates the relationship between the coordinate systems
of the camera and the lidar. This matrix is vital for precise data
fusion and interpretation, enabling the translation of coordi-
nates from the lidar to the camera system. Essentially, the cal-
ibration synchronizes the data from both sensors within a
unified coordinate framework, ensuring accurate alignment and
the combined utilization of the gathered spatial information.

In our study, we adopted a method that minimizes the re-
projection error, using MATLAB for the combined calibration
of the camera and lidar [39]. A checkerboard calibration board
angled obliquely within the scene served as the calibration

target. The camera and OPA lidar simultaneously captured
the 2D and 3D point cloud data of the board. The corner
points extracted from the checkerboard grid facilitated the es-
tablishment of geometric correspondences between the image
and lidar coordinate systems, enabling the computation of the
transformation matrices.

C. Region Prediction and Target-Adaptive Scanning
Method
We utilized the open-source object detection algorithm
Ultralytics YOLO-v8 for object detection and segmentation
[40]. Equation (1) outlines how to project a point �X , Y ,Z �T
from a three-dimensional world coordinate system onto a
point �u, v� T on a two-dimensional camera imaging plane.
Meanwhile, Eq. (2) describes how to compute the three-dimen-
sional coordinates �X , Y ,Z � T of a point �u, v� T on the camera
plane within the world coordinate system. Suppose the lidar
coordinate system is chosen as the world coordinate system.
In that case, R and t denote the rotation and translation ma-
trices between the lidar and camera coordinate systems, respec-
tively. Zc is a scaling factor proportional to the depth of
�X ,Y ,Z �T . In the camera imaging process, the information
of Zc will be discarded. Therefore, in order to compute the
three-dimensional coordinates �X , Y ,Z �T in the lidar coordi-
nate system of a point �u, v� T on the camera plane, the depth
information corresponding to the target point must be pro-
vided as prior information. In the target-adaptive algorithm,
prior depth information will be obtained through coarse
scanning with low resolution using OPA lidar. The two equa-
tions are
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Figure 4 shows a schematic representation of the target-

adaptive 3D imaging method. The YOLO-v8 object detection
algorithm extracted the target’s predicted box from an image
captured by a camera. The target’s prediction box is sub-
sequently transformed into a three-dimensional space under

Fig. 3. Schematic of camera and lidar coordinate system.
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the lidar coordinate system through backprojection and then
utilized to guide the target-adaptive 3D point cloud collection.
In the target-adaptive 3D point cloud collection, high-
resolution scanning will be employed for key objects, while
lower resolutions will be used for other objects. To enhance
the accuracy of delineating key objects, the YOLO-v8 segmen-
tation algorithm is employed to obtain pixel masks, replacing
the simple prediction box for key objects.

To evaluate the effectiveness of the proposed method, a stat-
istical analysis was conducted on the distribution of different
kinds of objects across various scenarios in the SemanticKITTI
dataset. The SemanticKITTI dataset, drawn from the KITTI
Vision Benchmark, features continuous 3D point cloud se-
quences, including Velodyne lidar and camera images, with
labeled categories and annotations [41]. The statistical results
are illustrated in Fig. 5.

The SemanticKITTI dataset divides point clouds into 28
semantic categories based on their corresponding target types.
These categories include “unlabeled,” “outlier,” “car,” “bicycle,”

“motorcycle,” “truck,” “other vehicle,” “person,” “bicyclist,”
“motorcyclist,” “road,” “parking,” “sidewalk,” “other ground,”
“building,” “fence,” “vegetation,” “trunk,” “terrain,” “pole,”
“traffic sign,” “other object,” “moving car,” “moving bicyclist,”
“moving person,” “moving motorcyclist,” “moving on rails,”
and “moving truck.” The 14 categories of targets, including
“car,” “bicycle,” “motorcycle,” “truck,” “other vehicle,” “person,”
“bicyclist,” “motorcyclist,” “moving car,” “moving bicyclist,”
“moving person,” “moving motorcyclist,” “moving on rails,”
and “moving truck,” are classified as key objects in Fig. 5.
These target locations, and their movement status and behav-
ior, are crucial for planning and decision-making in autono-
mous driving systems. “Unlabeled” and “outlier” are
classified as others. The other 12 semantic categories are clas-
sified as road and roadside features.

The analysis revealed that the road and roadside features cat-
egories constituted approximately 35% and 62% of the FOV,
respectively; the key objects accounted for less than 0.20%.
Figure 5(b) shows the analysis of 1000 randomly selected image
frames from different scenarios. Road and roadside features pre-
dominantly occupy the FOV, regardless of the scenario, and the
maximum proportion of point clouds for key objects seldom
exceeds 1%. These findings substantiate the fact that lidar sys-
tems allocate extensive point cloud resources to nonkey objects.
The proposed target-adaptive method can dynamically adjust
the scanning resolution for different types of objects based
on their importance. It substantially reduces the collection
of redundant and invalid point clouds while ensuring the high
resolution scanning for key objects and significantly enhancing
the system’s perception capabilities.

3. EXPERIMENTS AND RESULTS

A. Test System
The experimental setup of the target-adaptive OPA lidar 3D
imaging system is illustrated in Fig. 6. Figure 6(a) depicts

Fig. 4. Schematic representation of the target-adaptive 3D imaging
method.

Fig. 5. (a) Statistical distribution of point clouds across target types in varied scenarios. (b) Proportional analysis of targets across 1000
randomized images in various scenarios.
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the test system and scenario. An Intel RealSense D435 camera
was used for the RGB image collection. Figure 6(b) exhibits the
calibration board used for the joint calibration. Figure 6(c)
depicts the target mannequin model in the test scene.

Figure 7 presents the architecture of the OPA lidar. The
transmission path of the lidar system comprised a sweep-
frequency laser, an optical amplifier, and a transmitting OPA
(TX-OPA). The reception path included a receiving OPA (RX-
OPA), a mixer, a balanced detector, and a digital signal process-
ing unit. The driving circuit supplied the necessary voltages for
both the TX-OPA and RX-OPA. The sweep-frequency laser
emitted a triangular-wave frequency-modulated signal, which
was directed into the OPA after amplification. TX-OPA was
used to control the emission angle of the laser beam. RX-
OPA captured the light reflected from the target, which was
subsequently mixed and converted into an electrical signal us-
ing a balanced detector. The digital signal processing unit an-
alyzed the beat frequency signal. The time delay utilized to
determine the target distance was obtained by analyzing the
frequency difference between the reflected light and the refer-
ence light signal. Figure 7(b) shows the frequency domain

results derived from scanning a scene point with the frequencies
of both the up-chirp and down-chirp. The distance informa-
tion of a point can be computed by examining the positions
of the frequency peaks. Figures 7(c) and 7(d) display photo-
graphs of the OPA test board and chip, respectively. The input
light signal was channeled into the OPA chip via an optical
fiber, and the OPA test board was mounted on the driving cir-
cuit board beneath.

B. Calibration Result
During the joint calibration of the camera and lidar, it is im-
perative to gather multiple sets of images and point cloud data
for various poses. A photograph of the calibration board and a
set of point cloud data of the calibration board collected by
OPA lidar are presented in Fig. 8. Figure 9 shows the error
derived from the joint calibration process. The results indicate
that utilizing the pose matrix obtained from the joint calibra-
tion for reprojection yielded an average reprojection error of
3.91 pixels. The average translation and rotation errors were
11.22 mm and 1.33°, respectively.

C. Target Region Extraction and Adaptive Scanning
Strategy for Imaging
In the global high-resolution scanning, the horizontal FOV was
set to 27.20° with a horizontal resolution of 0.40°; the vertical
FOV was set to 8.52° with a vertical resolution of 0.85°. The
captured image of the test scene and the 3D point cloud are
illustrated in Fig. 10. The number of points in Fig. 10(b)
is 759.

In the target-adaptive method, the RGB image of the scene
and the coarse scanned point cloud data will be acquired at first.
The resolution of the coarse scanning is 1.60° �horizontal� ×
1.70° �vertical�. The point cloud from the coarse scanning is
depicted in Fig. 11(a), with a total of 108 points. The refined
and smooth depth map, generated using the natural neighbor
interpolation method, is presented in Fig. 11(b). The red box
in Fig. 11(c) indicates the target prediction box identified using
the object detection algorithm. The refined depth map, com-
bined with the prediction box identified by the object detection

Fig. 6. (a) Test system and scenario. (b) Calibration board.
(c) Target to be tested.

Fig. 7. (a) Schematic depiction of FMCW-based OPA lidar test system. (b) Up-chirp and down-chirp results of the FMCW system. (c) OPA
testing board. (d) Micrograph of the Vernier OPA chip.
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algorithm, facilitates the transformation of a 2D prediction
box into a 3D target region. Subsequently, the lidar performs
a formal scanning of the 3D target region. The point cloud of
the 3D target region is illustrated in Fig. 11(d), and the number
of points of Fig. 11(d) is only 220. This approach ensures that
the point cloud data are concentrated in the key objects,
thereby significantly enhancing the utilization of the lidar point
cloud.

For targets exhibiting unique shapes or poses, it is more ef-
ficient to use the target segmentation results for 3D target re-
gion prediction than for rectangular target prediction boxes.
To further optimize the point cloud allocation strategy, the
YOLO-v8 segmentation algorithm is employed to extract
the segmentation mask of the key object in the test scene,
and the segmentation result is presented in Fig. 12(a). The
3D area corresponding to the segmentation mask of the key
object is named the primary target area, whereas the remaining
regions are named the secondary target areas. Due to systematic
errors, such as target segmentation errors, calibration errors,
and coarse depth measurement errors, there may be some
deviation in selecting the primary target area. To guarantee
the complete coverage of the key objects, the primary target
area will be slightly expanded in the scanning process.

Referring to Fig. 10(b), for the primary target area, the scan-
ning resolution was doubled in both the horizontal and vertical
directions, whereas the scanning resolution for the secondary
target area was halved. The target-adaptive point cloud is pre-
sented in Fig. 12(b), encompassing 662 points, with 413 points
covering the primary target area. Adding the 108 points ob-
tained in the coarse scanning, the total number of points is
770. In contrast, only 107 out of the 759 points in Fig. 10(b)
fall within the primary target area. Therefore, in the test scene,
applying the target-adaptive method based on semantic seg-
mentation results in an approximately fourfold increase in
the point density of the primary target area, with a similar total
points number. If the resolution of global uniform scanning is
increased to that of the primary target area in the target-
adaptive method, the number of points in the frame will reach
2877. Consequently, in the test scene, compared to traditional
scanning methods, the target-adaptive method based on
semantic segmentation reduces the number of points to about
one-quarter while maintaining the resolution of the primary
target area. The specific comparison results are list in Table 1.

The previous statistical analysis of the SemanticKITTI data-
set indicates that the proportion of the primary target area in
actual autonomous driving scenarios is notably lower than in
the test scene. Consequently, the advantage of the proposed
target-adaptive method will be more evident. By reducing re-
dundant data and increasing the point density of the primary
target area, the proposed target-adaptive method not only alle-
viates the computational burden but also enhances the percep-
tion capabilities of the lidar system. This, in turn, provides
stronger support for the safety of autonomous driving.

Fig. 9. Results of joint calibration errors. (a) Translation errors.
(b) Rotation errors. (c) Reprojected errors.

Fig. 10. (a) Test scene image. (b) Global uniform scanning of test
scene.

Fig. 8. Joint calibration of the camera and lidar. (a) Photographic representation of the calibration board. (b) Point cloud of the calibration board.
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4. CONCLUSION

This study has introduced a target-adaptive OPA lidar 3D im-
aging method. A camera and an OPA lidar were integrated to
create a target-adaptive OPA lidar system. It employs target de-
tection and segmentation algorithms to preprocess images cap-
tured by the camera and extract segmentation masks of the
primary target within the scene. Benefiting from the flexible
scanning angle control capability of OPA lidar, the target-adap-
tive OPA lidar system can then conduct high-resolution scans
of primary target areas based on semantic segmentation while
performing low-resolution scans of secondary target areas. The
test results indicate that in the scene, the proposed target-
adaptive method based on semantic segmentation increases the
point cloud density of primary target areas by approximately

four times while keeping the total point count essentially con-
stant. Alternatively, the method reduces the required point
quantity to about one-quarter of the global uniform scanning
while keeping the point cloud density of the critical target
areas unchanged. Furthermore, the statistical analysis of the
SemanticKITTI dataset reveals a much lower primary target
area proportion in real driving scenarios compared to the test
scene. Thus, the advantage of the proposed target-adaptive
method will be more apparent.

In summary, the proposed method can improve the percep-
tion of primary target areas while minimizing the collection of
redundant or irrelevant data. It will reduce the computational
burden on an OPA lidar system and enhance the safety of
autonomous driving, thereby demonstrating significant practi-
cal value.

Fig. 11. (a) Point cloud of the coarse scanning. (b) Depth map using interpolation. (c) Target prediction box of the key object. (d) Point cloud of
the 3D target region in the formal scanning.

Fig. 12. (a) Mask of the mannequin model. (b) Point cloud image obtained through target-adaptive method.

Table 1. Comparison of Quantity and Distribution of Point Clouds Required for Global Uniform Scanning with
Target-adaptive Methoda

Scanning Strategy
Number of Point

Clouds
Number of Point Clouds

for the Primary Target Area
Horizontal

FOV/Resolution (°)
Vertical

FOV/Resolution (°)

Global uniform (high resolution) 2877 413 27.20/0.20 8.52/0.43
Global uniform 759 107 27.20/0.40 8.52/0.85
Target-adaptive 770 413 27.20/0.20 at PA

and 0.80 at SA
8.52/0.43 at PA
and 1.70 at SA

aPA, primary target area; SA, secondary target area.
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